Janko Bračič

Sets of operators determined by the numerical range

Abstract

Let \mathscr{H} be a complex Hilbert space and $B(\mathscr{H})$ be the Banach algebra of all bounded linear operators on \mathscr{H}. The numerical range of $A \in B(\mathscr{H})$ is

$$
W(A)=\{\langle A x, x\rangle ; \quad x \in \mathscr{H},\|x\|=1\} .
$$

It is well-known that $W(A)$ is a bounded convex subset of complex numbers and that its closure contains the spectrum of A.

For a non-empty bounded set $E \subseteq \mathbb{C}$, let

$$
\mathscr{W}_{E}=\{A \in B(\mathscr{H}) ; E \subseteq \overline{W(A)}\} .
$$

It is easily seen that this is a non-empty closed set of operators. The case $E=\{0\}$, that is, the set of operators with 0 in the closure of the numerical range, is of a special interest. We will present several results related to the algebraic structure of $\mathscr{W}_{\{0\}}$. For instance, if \mathscr{H} is finite dimensional, then for an operator $A \in \mathscr{W}_{\{0\}}$ there exists a positive semi-definite operator P such that $0 \notin W(P A)$ if and only if 0 is not in the convex hull of the spectrum of A.

Another class of sets determined by numerical ranges are

$$
\mathscr{W}^{F}=\{A \in B(\mathscr{H}) ; \overline{W(A)} \subseteq F\}
$$

where $F \subseteq \mathbb{C}$ is a given non-empty set. If F is closed, then \mathscr{W}^{F} is closed in the strong operator topology. Moreover, in this case, \mathscr{W}^{F} is reflexive in the sense that every operator which is locally in \mathscr{W}^{F} belongs to \mathscr{W}^{F}. If F is convex, then \mathscr{W}^{F} is convex, as well. We are able to characterize faces of \mathscr{W}^{F} in the case when \mathscr{H} is finite dimensional and F is a polyhedron.

The presented results are based on joint papers with Cristina Diogo which have been published during last few years.

